第222页

……

可以看出,z(n)这个函数,在不断的迭代之后,结果会逐渐趋于某一个值。

当然,这只是z(0)=1的变化。

数学家对朱利亚集经过一系列不可描述的研究之后,发现并不是所有的z(0)值都能组成有界的分形图形。

只有z(0)在【-15,15】范围内,z(n)的值才是有限的。

也就说,只有在【-15,15】之内,朱利亚集才能构成有界的分形图形。

而这一次,节目组将z(0)的值固定,针对参数c的变化进行出题。

参数c,可写为c(x,y)=x+iy。

c的值,由一个实部x,和一个虚部y来决定。

改变x,y的值,其对应的分形图也会发生变化。

并且,x,y的变化,是非线性的,时快时慢。

嘉宾会随机在x,y在一定区间(准确的说是【-1,1】)内变化生成的100分形动画中,挑选7个。

从每个分形动画中截取50张分形图。

程诺和李十夜两人,可各选择2张,显示该分形图对应x,y的数值。

然后两人通过现场的学习,推演出公式到图形的生成逻辑。

然后根据推到出的生成逻辑,来判断具体的x,y的值,精确到小数点后3位。误差,在【-0001,0001】之间!

七道题目,七个分形动画,七个生产逻辑,一百七十五张分形图形,28000000种x,y的可能取值。