第635页

普遍意义上的非奇异代数簇的zata函数的共同性质。

这不仅仅揭示了有限域上定义的代数簇的算数和复代数簇的拓扑之间的一个深刻联系,还说明了拓扑空间上的同调方法,同样适用于簇和概形。

作为几何学方面的数学家,拉塞尔深知这个定理的出现意味着什么。

几何学能够通过拓扑学的同调方法,对表示理论和自同构理论展开更深层次的研究。

与此同时,一直困扰frobeni自同态领域的环映射问题将会得到解决。将代数拓扑和代数几何的otive工具会再次增加。

另外,由于该定理研究的核心依旧是zata函数,那么对于黎曼猜想的证明,也会提供另一种新奇的思路。

总之,只要程诺只要能证明这个结论是一个“定理”,那绝对会在几何学领域造成一股风暴。

“开玩笑?”程诺耸耸肩,开口说道,“拉塞尔先生,我可没有开玩笑的心思。”

拉塞尔眉头紧紧皱起,“那你……”

“真是麻烦。”程诺直接往礼堂前方的舞台上走去,一边走一边说道,“算了,我还是证明给你们看吧。”

说着,程诺大步迈到台上,对旁边还在愣神的青年迈伦说道,“有粉笔吗?”

“哦,有,有。”迈伦短路了几秒,迷迷糊糊的从一旁递给程诺一盒粉笔。

为了方便,酒店方面早就在礼堂讲台墙面上装上了四面上下拉动的黑板。

程诺不管拉塞尔和台下二十多位数学家呆滞的眼神,自顾自的唰唰在黑板上写道:

【设x是fq上的d维光滑射影簇,则zata函数zx(t)是一个有理函数,即zx(t)∈q(t),更精确的,zx(t)可写成如下有限交错积的形式:

zx(t)=ni(t)(-1)(i+1)=1(t)3(t)……2d-1(t)0(t)2(t)……2d(t),其中0(t)=1-t和2d(t)=1-qdt】

【对于1≤i≤2d-1,i(t)∈1+tz[t]是整系数多项式,并且i(t)在c[t]中可分解为n(1-aijt),aij∈z】