第二题是一道代数题,题面是这样的:
1
1-1
1-2-1
1-3-3-1
1-4-6-4-1
1-5-10-10-5-1
1、请计算出第1024行所有数字之和。(5分)
2、并证明第4201行中的任意一数为分数或负数的情形都适用。(15分)
其实不少高中生都认识这个数字三角形,杨辉三角谁不认识,参加过数联、奥数竞赛的中学生都知道杨辉三角的规律性。
沈奇当然懂这个数字三角形,这个数字三角形在中国叫杨辉三角,在西方叫“帕斯卡三角阵”,分别以中西两位数学家的名字命名。
杨辉三角的规律性不难被观察出来,三角阵中的每个数是其上方紧邻两数之和。
依此类推,沈奇很快算出了第1024行所有数字之和为xxxxx……这是个天文数字,用2的1023次方表达。
第二题的第一小题简直就是送分题,所以分值不高,才5分。
难的是第二小题,分值为15分。
正向推导第4201行中任意一数为分数或负数的情形都适用,这就很让人头疼了,无从下笔啊,根本找不到一丝线索。