丢番图方程的历史如此悠久,她简单却又复杂,看上去萌萌的挺单纯,只不过是对整数的研究而已。

然而这位单纯萌萌哒的可人儿呵,如果求解者不懂她的心,她便将你拒之千里之外,冷若冰霜的高傲,不理会你一言一语。

如果你掌握了破解技巧,她便对你从一而终,专一的陪伴一生一世。

沈奇望向窗外,此刻的他非常想念远在东方的女朋友,单纯可爱,外冷内萌,时不时挥动小拳头,她生气的样子最迷人。

欧叶,你还好吗?

这篇丢番图方程的论文,就是为你所著。

为此,我不得不证明一个新的数学定理,让沃什猜想成为沃什定理。

是的,我做到了。

哪怕花费一年多的时间,也值得。

丢番图方程的主要意义,是讨论整系数多项式f(x1,x2……xn)=0的有理解或整数解,有时也讨论多个方程构成的方程组的解数问题。

许多著名的丢番图方程以及对它们的研究,丰富和推动了数学的发展。

勾股定理对应的就是一个丢番图方程x2+y2=z2

从数论的角度解释,勾股方程满足gcd(x,y,z)=1的正整数解可由一个参数族给出,它是一条典型的亏格为0的曲线,为近现代中小学数学教材的编写提供了简洁有力的理论支撑。

丢番图方程理论上有无穷多个,最著名的那个应该是费马不加证明的猜测,即当n≥3时,方程xn+yn=zn没有≠0的整数解。

这个猜想如此之难,以至于许多大佬级别的数学家在殚精竭虑三百多年之后,才最终由怀尔斯先生完成证明,于是“费马大猜想”变为“费马大定理”。

怀尔斯对这个丢番图方程的研究直接导致了代数数论的产生,在数学史上留下了浓墨重彩的一笔。