事实真是这样吗?

不,并不是。

这是国决压轴题,并没有你想象的那么low。

因为在出题老师的设定中,沈奇穿越到了古希腊,成为了毕达哥拉斯的学生,希帕苏斯的师弟。

学数学的人不可能不知道毕达哥拉斯派,以及这个学派的创始人毕达哥拉斯。

毕达哥拉斯是数学史上的远古大神,他在萨摩斯岛上建立了一个神秘组织,集科学、宗教、哲学为一身,用现在的话说,这个组织极有可能就是传说中的“科学神教”。

毕达哥拉斯派的核心宗旨就是:数学研究抽象概念。

直到21世纪的今天,数学家们也承认毕达哥拉斯在2500年前提出的观点,数学研究的是抽象概念。

毕达哥拉斯一生中有两大爱好,研究数学,以及杀学生,越聪明成绩越好的学生越要杀。

希帕苏斯是毕达哥拉斯的得意弟子,他通过几何作图法,证明了不存在某个整数与整数之比,它的平方为2。这个方法记录于初中二年级的课本上,是初中生接触无理数的启蒙篇章。

然后希帕苏斯就被毕达哥拉斯绑起来丢海里喂鱼了,让你装逼?装逼者必须死。

毕达哥拉斯死后,希帕苏斯所创的几何证明法最终流传于世,他用生命换来的奇思妙思即今天初中课本上的“正方形无穷辗转相除算法求最大公约数”。

在国决压轴题特殊的题境中,沈奇被出题者设定为希帕苏斯的师弟,所以他不能使用几何法去证明根号2是无理数。否则会被出题者“淹死”,连一分都拿不到。

在沈奇掌握的至少八种证明方法中,当然也有其他办法,但他是希帕苏斯的师弟,生活在2500年前,那个时代尚不存在质数法,甚至连根号都没出现,所以其他的证明方法自动失效。

题面上写的是“请证明不存在某个整数与整数之比,它的平方为2”,而不是“请证明根号2是无理数”。

所以这题很变态。

这也印证了数学界的一句老话:sile is hard